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Abstract. We develop a generalized theory of Raman scattering by bulk and surface polaritons
in semi-infinite geometry. The generalized expressions for the differential scattering cross sections
for bulk and surface polaritons are derived, and found to be dependent on the incident and
scattered frequencies, optical and crystal excitation wavevectors, electric field fluctuations and with
Lorentzian lineshapes. We give explicit forms of the damping functions for both bulk and surface
polaritons. For the case of the phonon type polaritons, our general formalism reduces to expressions
reported previously, and the results are applied to GaP bounded by vacuum. Applications of the
generalized formalism to other cases is discussed.

1. Introduction

Raman scattering by polaritons and other crystal excitations has been extensively studied for
several years now [1–5], and a vast quantity of both experimental and theoretical knowledge has
been accumulated [6–8]. Theoretically, the calculation of the Raman scattering cross section
by bulk polaritons has been approached by two methods mainly, based on the linear response
theory [9] and on the Green function formalism [10]. The method of linear response theory
has been applied to calculate scattering cross sections by surface polaritons in semi-infinite
geometry [11], thin films [12] and bilayers [13], while the Green function formalism has also
been applied to study surface polaritons in the semi-infinite geometry [14] and in the thin film
geometry [15].

Although expressions for the differential scattering cross sections for bulk polaritons
[9, 10] and surface polaritons in the semi-infinite geometry [11, 14] have been reported, what
is new in this paper is that we derive more general forms, and we show that the previous
results can be derived from our general formulation. Recently, for example, the author of
[2] has commented that the theoretical knowledge of Raman and Brillouin scattering in the
presence of a surface needs further study. Our aim in this paper is to generalize the approach of
deriving the Raman scattering cross section in the presence of a surface, and thereby further our
understanding of this geometry. As we shall see in this paper, the derived expressions for the
differential scattering cross sections for bulk and surface polaritons are found to be dependent
on the incident and scattered frequencies, optical and crystal excitation wavevectors and electric
field fluctuations and have Lorentzian lineshapes, with most of the dependence being expressed
in terms of the dielectric functions of the media comprising the semi-infinite geometry. When
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we apply our results to phonon type polaritons, our general formalism recovers expressions
that have been reported previously [9, 11].

This paper is organized as follows. In section 2, we derive the generalized expressions for
the differential scattering cross sections for bulk and surface polaritons. Section 3 is devoted
to the discussion and applications of the derived differential scattering cross sections to three
cases of interest, and numerical results are presented for scattering by phonon type polaritons.
Concluding remarks are made in section 4.

2. Scattering cross section

The geometry studied in this paper consists of a medium with a frequency dependent dielectric
functionε(ω) occupying the half spacez < 0 (to be referred to as medium 2) and a surface
inactive medium with a positive dielectric constantε1 in the other half spacez > 0 (to be
referred to as medium 1). Throughout the paper, we shall use the notation that subscripts 1
and 2 refer to quantities in media 1 and 2 respectively, unless otherwise stated. In this section,
we calculate the generalized differential scattering cross sections for both bulk and surface
polaritons propagating in the semi-infinite geometry.

2.1. Scattering by bulk polaritons

Using linear response theory as described in [9] and [11], the differential scattering cross
section for bulk polaritons can be written in the form

d2σ

d� dωs
= h̄ε1ωlω

3
sAV cos2 θs [n(ω) + 1]|aBβ + bB |2

4π3ε3
0c

4V̄ [(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]

×Im

{
− 1

ε(ω)
+

2

(cq/ω)2 − ε(ω)
}

(1)

whereωl is the frequency of the incident light,ωs is the frequency of the scattered light,V is
the scattering volume in a sample of volumeV̄ , A is the area of the crystal surface through
which the scattered beam emerges,θs is the scattering angle in medium 1,kl

′
2z andkl

′′
2z are

the real and imaginary parts of the normal component of the wavevector of the incident light
in medium 2,q ′2z andq ′′2z are the real and imaginary parts of the normal component of the
polariton wavevector in medium 2,ks

′
2z andks

′′
2z are the real and imaginary parts of the normal

component of the wavevector of the scattered light in medium 2,n(ω) is the Bose–Einstein
factor

n(ω) = 1

[exp(h̄ω/kBT )− 1]
(2)

and

|aB | = gfhfiεli aνhij (3)

|bB | = gfhfiεli bhij (4)

β = Z

ω2
T − ω2 − iω0

(5)

wheregfh are matrix elements of a matrixg given in [11],fi are Fresnel coefficients,εli is a
unit vector in the direction of incident light,aνhij andbhij are nonlinear coefficients discussed
in [9] andZ is an effective charge associated with the lattice vibrations.

In equation (1), the first term in the curly brackets is the longitudinal response function,
and the second term is the transverse response function. It can be noted that the poles of the
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bulk response functions generate the bulk polariton dispersion relation for transverse modes,
given by

c2q2

ω2
= ε(ω) (6)

and the condition for longitudinal modes, with no dispersion

ε(ω) = 0. (7)

To evaluate the imaginary part of the bulk response functions, we introduce damping by
introducing a complex frequency [17, 18]

ω→ ω − i 1
20(ω) (8)

where0(ω) is the damping function (or linewidth). We then expand the dielectric function in
the complex frequency, but neglect02(ω) and higher order terms. Considering small damping,
the scattering cross section will have a peak at a frequencyω0, close to the undamped frequency
ω defined in equation (6) for bulk polaritons, and we obtain, after some algebra, the following
approximation (see appendix A)

Im

{
1

c2q2/ω2 − ε(ω)
}
= ω0

2
{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} 1
20b(ω0)

(ω − ω0)2 +
[

1
20b(ω0)

]2 (9)

where0b(ω0) is the bulk polariton damping function given by [17, 18]

0b(ω0) =
ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

0{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} . (10)

Using equation (9) in equation (1), we obtain the differential scattering cross section for bulk
transverse modes as

d2σ

d� dωs
= h̄ε1ωlω

3
sAV cos2 θs [n(ω0) + 1]

8π3ε3
0c

4V̄ [(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]

ω0|aBβ + bB |2{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

}
×

1
20b(ω0)

(ω − ω0)2 +
[

1
20b(ω0)

]2 . (11)

Equation (11) is one of the important results of this paper; let us consider it in two limits of
physical interest.First, consider the case when the crystal is opaque to the incident radiation,
in which case the imaginary parts of the optical wavevectors are much larger than the real
parts. For the crystal excitation wavevectors, we takeq2z as real since we are considering the
small damping limit. With these approximations, and replacing a summation by an integral in
the steps towards the derivation of equation (1), we obtain∑
q2z

1

|kl2z − q2z + ks2z|2
→ L̄

2π

∫ ∞
−∞

dq2z

[(kl
′

2z − q2z + ks
′

2z)
2 + (kl

′′
2z + ks

′
2z)

2]
(12)

= L̄

2(kl
′′

2z + ks
′′

2z)
. (13)

Using equation (13) in equation (11), and noting that

V̄ = AL̄ (14)
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the differential scattering cross section in equation (11) becomes

d2σ

d� dωs
= h̄ε1ωlω

3
s V cos2 θs [n(ω0) + 1]

16π3ε3
0c

4(kl
′′

2z + ks
′′

2z)

ω0|aBβ + bB |2{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

}
×

1
20b(ω0)

(ω − ω0)2 +
[

1
20b(ω0)

]2 (15)

and thus the differential scattering cross section in equation (15) is proportional to the scattering
volumeV , and not the sample volumēV which cancels out. The dependence where the
differential cross section is inversely proportional to the sum of the optical wavevectors has
been observed by several authors [19–23].

Secondly, consider the case when the crystal is transparent to the incident radiation, in
which caseq2z, k

l
2z, k

s
2z are real, and again, replacing a summation by an integral in the steps

towards the derivation of equation (1), and taking appropriate limits, we obtain∑
q2z

1

|kl2z − q2z + ks2z|2
→ lim

kl
′′

2z ,k
s′′
2z→0

L̄

2π

∫ ∞
−∞

dq2z

[(kl
′

2z − q2z + ks
′

2z)
2 + (kl

′′
2z + ks

′′
2z)

2]
(16)

= 2πL̄δ(kl
′

2z − q2z + ks
′

2z) (17)

and the diferential scattering cross section in equation (11) becomes

d2σ

d� dωs
= h̄ε1ωlω

3
s V cos2 θs [n(ω0) + 1]

4π2ε3
0c

4

ω0|aBβ + bB |2{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

}
×

1
20b(ω0)

(ω − ω0)2 +
[

1
20b(ω0)

]2 . (18)

One of our objectives in this paper has been met by having obtained equation (11) and its
limiting expressions given in equations (15) and (18), since these equations give the differential
scattering cross section for bulk polaritons propagating in a semi-infinite medium of a frequency
dependent dielectric functionε(ω), bounded by another medium with a positive dielectric
constantε1.

2.2. Scattering by surface polaritons

The method of linear response theory was used to study Raman scattering by surface phonon–
polaritons by Nkoma and Loudon [11], and, following their approach, the differential scattering
cross section for surface polaritons can be written in the form

d2σ

d� dωs
= h̄ε1ωlω

3
sAĀ cos2 θs [n(ω) + 1]|aSβ + bS |2

4π3ε2
0c

4[(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]
Im {〈〈S〉〉xx + 〈〈S〉〉zz} (19)

whereA is the area of the crystal surface through which the scattered beam emerges (or
scattering area),̄A is the surface area of the sample,aS, bS andβ have similar definitions
as those given in equations (3) to (5). The terms in the curly brackets of equation (19) are
elements of the matrix〈〈S〉〉, given in equation (20) below, for the surface response functions.

〈〈S〉〉 =


iq∗2zq1z

Ā[ε(ω)q1z − ε1q2z]

iq∗2zq2xq1z

Ā[ε(ω)q1z − ε1q2z]q2z

−iq∗2zq2xq1z

Ā[ε(ω)q1z − ε1q2z]q2z

−iq∗2zq
2
2xq1z

Ā[ε(ω)q1z − ε1q2z]q2
2z

 (20)
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whereq1z, q2z are normal components of the surface polariton wavevectorsq1, q2 respectively.
The poles of the surface response functions generate the surface polariton dispersion relation,
given by

c2q2
2x

ω2
= ε1ε(ω)

ε1 + ε(ω)
(21)

whereq2x is the tangential component of the surface polariton wavevector and is conserved
across the boundary atz = 0.

Inserting the response functions from equation (20) in equation (19), the differential
scattering cross section for surface polaritons becomes

d2σ

d� dωs
= h̄ε1ωlω

3
sA cos2 θs [n(ω) + 1]|aSβ + bS |2

4π3ε3
0c

4[(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]
Im

{
iq∗2zq1z − iq∗2zq

2
2xq1z/q

2
2z

ε(ω)q1z − ε1q2z

}
.

(22)

We introduce a complex frequency [17, 18], as in equation (8), and calculate to first order
in 0(ω0) the imaginary part of surface response functions in the expression appearing in
equation (22). We obtain, after some algebra, the following approximation (see appendix B)

Im

{
iq∗2zq1z − iq∗2zq

2
2xq1z/q

2
2z

ε(ω)q1z − ε1q2z

}
= ω0ε1|q ′′2z|{

ε′(ω0)[ε1 + ε′(ω0)] + ε1
ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

}
×

1
20s(ω0)

(ω − ω0)2 +
[

1
20s(ω0)

]2 (23)

where0s(ω0) is the surface polariton damping function given by [17, 18]

0s(ω0) =
ε1
ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

0{
ε′(ω0)[ε1 + ε′(ω0)] + ε1

ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} . (24)

By using equation (23) in (22), the differential scattering cross section for surface polaritons,
in the limit of small damping, is obtained as

d2σ

d� dωs
= h̄ε2

1ωlω
3
sA cos2 θs [n(ω0) + 1]|q ′′2z|

4π3ε3
0c

4[(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]

× ω0|aSβ + bS |2{
ε′(ω0)[ε1 + ε′(ω0)] + ε1

ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} 1
20s(ω0)

(ω − ω0)2 +
[

1
20s(ω0)

]2 . (25)

Equation (25) is another important result of this paper since it meets our objective of deriving
a generalized differential scattering cross section for surface polaritons propagating along an
interface between a semi-infinite medium of a frequency dependent dielectric functionε(ω),
bounded by another medium with a positive dielectric constantε1.

3. Numerical results and discussion

In the previous sections, we have developed a generalized theory of Raman scattering by bulk
and surface polaritons in the semi-infinite geometry. Let us apply this theory to some cases of
practical interest.



4098 J S Nkoma

3.1. Case I: scattering by phonon type polaritons

For scattering by phonon type polaritons, we consider a dielectric function of the form

ε(ω) = ε(∞) +
Sω2

T

ω2
T − ω2 − iωγ

(26)

whereε(∞) is the high frequency dielectric constant,S gives the strength of the resonance
andωT is the TO phonon frequency. Numerical results will be illustrated using the following
parameters for GaP [24]:ε(∞) = 9.09, ωT = 366.0 cm−1, S = 2.01, 0 = 0.005ωT .

If we examine the second term of equation (11) (or the limiting expressions in
equations (15) and (18)) for the differential scattering cross section for bulk polaritons, and
use equation (26) in the limit of small damping, then the following identity holds

1{
ε′b(ω0) + ω0

2
∂ε′b(ω)
∂ω

∣∣
ω=ω0

} = (ω2
T − ω2

0)
2

{ε(∞)(ω2
T − ω2

0)
2 + Sω4

T }
. (27)

The differential scattering cross sections can therefore be rewritten using the identity given in
equation (27), and, in particular, equation (18) becomes

d2σ

d� dωs
= h̄ε1ωlω

3
s V cos2 θs [n(ω0) + 1]

4π2ε3
0c

4

ω0|aBZ + bB(ω2
T − ω2

0)|2
{ε(∞)(ω2

T − ω2
0)

2 + Sω4
T }

×
1
20bp(ω0)

(ω − ω0)2 +
[

1
20bp(ω0)

]2 (28)

where

0bp(ω0) = ω2
0ω

2
T S0

ε(∞)(ω2
T − ω2

0)
2 + Sω4

T

. (29)

Equation (28) captures the essence of equation (3.69) of [9], with second and third terms
being exactly the same, and a slight difference in some factors in the first term because in this
paper we are considering bulk polaritons in a semi-infinite medium, whereas in [9] they were
considering bulk polaritons in an infinite medium. Hence, our general formalism for bulk
polaritons practically reduces to a previous result. The damping function in equation (29) is
obtained by using equation (26) in equation (10) in the limit of small damping.

The magnitude of electric field fluctuations for bulk polaritons, calculated by the
fluctuation-dissipation theorem [9], is given by

〈|E0(t)|2trans〉Av =
h̄ω0[n(ω0) + 1

2](ω2
T − ω2

0)
2

V̄ ε0{ε(∞)(ω2
T − ω2

0)
2 + Sω4

T }
. (30)

One can see, by inspection, from equation (28) that the differential scattering cross sections
for transverse bulk polaritons are proportional to transverse electric field fluctuations given in
equation (30).

Similarly, if we examine the second term of equation (25) for the differential scattering
cross section for surface polaritons, and use equation (26) in the limit of small damping, then
the following identity holds

1{
ε′(ω0)[ε1 + ε′(ω0)] + ε1

ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} = (ω2
T − ω2

0)
2

{ε(∞)[ε1 + ε(∞)](ω2
s − ω2

0)
2 + ε1Sω

2
T ω

2
s }

(31)
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whereωs is the upper limiting frequency for surface polaritons given by

ωs =
[
ε1 + ε(∞) + S

ε1 + ε(∞)
]1/2

ωT . (32)

By using equation (31) in (25), we obtain the following differential scattering cross section for
surface polaritons

d2σ

d� dωs
= h̄ε2

1ωlω
3
sA cos2 θs [n(ω0) + 1]|q ′′2z|

4π3ε3
0c

4[(kl
′

2z − q ′2z + ks
′

2z)
2 + (kl

′′
2z − q ′′2z + ks

′′
2z)

2]

× ω0|aSZ + bS(ω2
T − ω2

0)|2
{ε(∞)[ε1 + ε(∞)](ω2

s − ω2
0)

2 + ε1Sω
2
T ω

2
s }

1
20sp(ω0)

(ω − ω0)2 +
[

1
20sp(ω0)

]2 (33)

where

0sp(ω0) = ε1Sω
2
T ω

2
00

ε(∞)[ε1 + ε(∞)](ω2
s − ω2

0)
2 + ε1Sω

2
T ω

2
s

. (34)

Our general formalism for differential scattering by surface polaritons given in equation (25)
reduces to equation (33), which recovers equation (109) of [11], exactly. The damping function
in equation (34) is obtained by using equation (26) in equation (34) in the limit of small damping.

The magnitude of electric field fluctuations for surface polaritons, calculated by the
fluctuation-dissipation theorem [11], is given by

〈|E0(t)|2Surf ace〉Av =
2ε1h̄ω0|q2z|[n(ω0) + 1

2](ω2
T − ω2

0)
2

Āε0{ε(∞)[ε1 + ε(∞)](ω2
s − ω2

0)
2 + ε1Sω

2
T ω

2
s }
. (35)

One can see, by inspection, from equation (33) that the differential scattering cross section for
surface polaritons are proportional to surface electric field fluctuations given in equation (35).

In figure 1(a), the frequency dependence of the bulk electric field fluctuations, given in
equation (30), is illustrated, and it can be observed that the fluctuations decrease asω0/ωT → 1,
and increase with frequency forω0/ωT > ωL/ωT .

In figure 1(b), the frequency dependence of the surface electric field fluctuations, given in
equation (35), is illustrated, and it can be observed that the fluctuations increase with increasing
frequency, peaking at the upper limiting frequency for surface polaritons.

In figure 2(a), the frequency dependence of the bulk damping function, given in
equation (29), is plotted, and it is noted that the function increases with increasing frequency
for ω0/ωT < 1, with {0bp(ω0)/0} → 1 at the TO phonon frequency, and decreases with
increasing frequency forω0/ωT > ωL/ωT .

In figure 2(b), the frequency dependence of the surface damping function, given in
equation (34), is plotted, and it is noted that the function increases with increasing frequency,
with {0sp(ω0)/0} → 1 at the upper limiting frequency.

In figure 3(a), the frequency dependence of the Lorentzian lineshape which appears in the
last part of the differential scattering cross section for bulk polaritons in GaP, given by equation
(28), is plotted for the lower mode, and labelledLB(ω0) for ω0/ωT = 0.2, 0.6. Similarly, in
figure 3(b), the frequency dependence of the Lorentzian lineshape in the differential scattering
cross section for bulk polaritons in GaP is plotted for the upper mode forω0/ωT = 1.5, 3.0.

In figure 4, the frequency dependence of the Lorentzian lineshape which appears in the last
part of the differential scattering cross section for surface polaritons in GaP–vacuum geometry,
given by equation (33), is plotted and labelledLS(ω0) for ω0/ωT = 1.02, 1.04, 1.06, 1.08.
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(a)

(b)

Figure 1. (a) The frequency dependence of electric field fluctuations for bulk polaritons in GaP.
(b) The frequency dependence of electric field fluctuations for surface polaritons propagating along
an interface in the semi-infinite geometry consisting of GaP bounded by vacuum.

3.2. Case II: scattering by polaritons in a composite medium

The advantage of having expressed the differential scattering cross sections in the forms given
in equations (11), (15), (18) for bulk polaritons or in equation (25) for surface polaritons is
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(a)

(b)

Figure 2. (a) The frequency dependence of0bp(ω0)/0, the damping function for bulk polaritons
in GaP. (b) The frequency dependence of0sp(ω0)/0, the damping function for surface polaritons
propagating along an interface in the semi-infinite geometry consisting of GaP bounded by vacuum.

that one can use these cross sections for several types of dielectric function other than that
considered in case I above, and this is very convenient. For example, to study the differential
scattering cross sections for bulk or surface polaritons in composite media one would make
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(a)

(b)

Figure 3. (a) The frequency dependence of the Lorentzian lineshape,LB(ω0), of the differential
scattering cross section for bulk polaritons in GaP for the lower mode, forω0/ωT = 0.2 (full
curve),ω0/ωT = 0.6 (dashed curve). (b) The frequency dependence of the Lorentzian lineshape,
LB(ω0), of the differential scattering cross section for bulk polaritons in GaP for the upper mode,
for ω0/ωT = 1.5 (full curve),ω0/ωT = 3.0 (dashed curve).

the replacementε(ω)→ εeff (ω), whereεeff (ω) is an appropriate effective dielectric function
[25], in equations (11), (15), (18) or (25). The results of studying the application of this case
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Figure 4. The frequency dependence of the Lorentzian lineshape,LS(ω0), of the differential
scattering cross section for surface polaritons propagating along an interface in the semi-infinite
geometry consisting of GaP bounded by vacuum forω0/ωT = 1.02 (full curve),ω0/ωT = 1.04
(curve with longer dashes),ω0/ωT = 1.06 (curve with shorter dashes),ω0/ωT = 1.08 (curve with
dots).

will be reported elsewhere. For example, in a recent paper [26], the authors are reporting
optical investigations of oxygen ordering and persistent photo-doping in the high temperature
superconductor YBCO by using effective dielectric functions. Our formalism in this paper
can also be applied to model Raman scattering by bulk and surface polaritons in YBCO using
the appropriate effective dielectric functions for YBCO in equations (11), (15), (18) or (25).

3.3. Case III: scattering by polaritons in systems with other forms of dielectric functions

The representation of crystal excitations by dielectric functions is well known in condensed
matter physics [27]. Here, again, our formalism allows one to study the differential scattering
cross sections for bulk or surface polaritons in systems with other forms of dielectric functions
by making a replacementε(ω) → εother (ω), whereεother (ω) is an appropriate form of a
dielectric function, of which there are many examples, in equations (11), (15), (18) or (25).
This application is also being studied and the results will be reported elsewhere.

4. Conclusions

In conclusion, we state that we have developed a formalism that generalizes the derivation
of the Raman scattering cross section in the presence of a surface, for scattering by both
bulk and surface polaritons. The main results of this paper are equations (11) (and its limiting
expressions given in equations (15) and (18)) for the differential scattering cross section for bulk
polaritons, and equation (25) for the differential scattering cross section for surface polaritons.
The derived cross sections contain all the important factors, such as dependence on the incident
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and scattered frequencies and the optical and crystal excitation wavevectors contained in the
first part of the expression, dependence on electric field fluctuations contained in the middle
part of the expression and the Lorentzian lineshape contained in the last part of the expressions.

What is important in our general formalism is that it allows the use of several forms for
appropriate dielectric functions in equations (11), (15), (18) for bulk polaritons, or equation (25)
for surface polaritons. We have demonstrated this for case I, where equation (18) reduces to
a previous result, given in equation (28), for bulk polaritons, and equation (25) reduces to
another previous result, given in equation (33), for surface polaritons. Application of case I
has been studied in detail by applying our results to GaP bounded by vacuum. The frequency
dependence of the different parts of the differential scattering cross section have been illustrated
in figures 1(a), 2(a), 3(a) and 3(b) for bulk polaritons, and in figures 1(b), 2 (b) and 4 for surface
polaritons, as discussed in section 3. Further, case II can be used to study scattering by bulk
and surface polaritons in composite media if an appropriate effective dielectric function [25] is
used, and case III is an extension to study scattering by bulk and surface polaritons in systems
with other forms of dielectric functions.
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Appendix A: Evaluation of the imaginary part of the bulk response function

We seek to evaluate the magnitude of the imaginary part of the bulk response function{
1

c2q2/ω2 − ε(ω)
}
= RHS. (A1)

Consider a complex frequency defined as

ω→ ω − i 1
20(ω). (A2)

Expanding the dielectric function in the complex frequency, we obtain

ε(ω − i 1
20(ω)) = ε′(ω − i 1

20(ω)) + iε′′(ω − i 1
20(ω)) (A3)

= ε′(ω) + i

{
−0(ω)

2

∂ε′(ω)
∂ω

+ ε′′(ω)
}

(A4)

where02(ω) and higher order terms and products of0(ω) andε′′(ω) are considered to be
negligible.

RHS= ω2 − iω0(ω)

c2q2 − [ω2 − iω0(ω)]
[
ε′(ω) + i

{
−0(ω)

2
∂ε′(ω)
∂ω

+ ε′′(ω)
}] (A5)

= ω2 − iω0(ω)

c2q2 − ω2ε′(ω)− iω
{
−0(ω)

[
ε′(ω) + ω

2
∂ε′(ω)
∂ω

]
+ ωε′′(ω)

} (A6)

where in the evaluation of RHS we have used equations (A2) and (A4). We make the following
approximations in the limit of small damping. In the numerator, the imaginary part is small
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and negligible, that is,ω2− iω0(ω)→ ω2. In the denominator,ε′′(ω) is small and considered
negligible. With these approximations, we obtain

RHS= 1{
ε′(ω) + ω

2
∂ε′(ω)
∂ω

}


ω2[
c2q2−ω2ε′(ω)
ε′(ω)+ ω

2
∂ε′(ω)
∂ω

]
+ iω0(ω)

 . (A7)

In small damping, the scattering cross section will have a peak at a frequencyω0, close to the
undamped frequencyω defined in equation (6) for bulk polaritons. It is therefore possible to
define for everyq a frequencyω0, and we make the following approximation in the first term
in the denominator of the large curly brackets in equation (A7)[
c2q2 − ω2ε′(ω)

ε′(ω) + ω
2
∂ε′(ω)
∂ω

]
≈ ω2

0ε
′(ω0)− ω2ε′(ω)

ε′(ω) + ω
2
∂ε′(ω)
∂ω

(A8)

≈ ω2
0 − ω2

1 + ω
2ε′(ω)

∂ε′(ω)
∂ω

(A9)

≈ ω2
0 − ω2 (A10)

where we have used the approximationsε′(ω) ≈ ε′(ω0) and

ω

2ε′(ω)
∂ε′(ω)
∂ω

→ 0. (A11)

Using equation (A10) in (A7), we obtain

RHS= 1{
ε′(ω) + ω

2
∂ε′(ω)
∂ω

} { ω2

(ω2
0 − ω2) + iω0(ω)

}
. (A12)

Provided that the scattering cross section has a narrow spread about its maximum atω0, the
frequencyω can be replaced byω0 everywhere except in the term of the ‘difference’ in ‘the
difference of two squares’ in equation (A12). We obtain

RHS= 1{
ε′(ω0) + ω0

2
∂ε′(ω0)

∂ω

∣∣
ω=ω0

} { ω2
0

2ω0(ω0 − ω) + iω00(ω0)

}
(A13)

and taking the imaginary part of equation (A13), its magnitude is

Im

{
1

c2q2/ω2 − ε(ω)
}
= ω0

2
{
ε′(ω0) + ω0

2
∂ε′(ω)
∂ω

∣∣
ω=ω0

} 1
20(ω0)

(ω − ω0)2 +
[

1
20(ω0)

]2 (A14)

which is equation (9) in the main text.

Appendix B: Evaluation of the imaginary part of the surface response function

We seek to evaluate the magnitude of the imaginary part of the surface response function{
iq∗2zq1z − iq∗2zq

2
2xq1z/q

2
2z

ε(ω)q1z − ε1q2z

}
= RHS. (B1)

Note that part of the term in the curly brackets of equation (B1) can be written in the form

1

[ε(ω)q1z − ε1q2z]
= [ε(ω)q1z + ε1q2z]

[ε(ω)− ε1]{ε1ε(ω)ω2/c2 − q2
2x [ε(ω) + ε1]} . (B2)
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Combining equation (B2) and relations for the polariton wavevectors, we obtain

RHS= 2|q2
1z||q ′′2z|

{ε1ε(ω)ω2/c2 − q2
2x [ε(ω) + ε1]} . (B3)

Inserting the expression for the complex frequency and the expansion of the dielectric function
as in appendix A, we obtain

RHS= [2|q2
1z||q ′′2z|]

[
ε1ε
′(ω)ω2

c2
− [ε1 + ε′(ω)]q2

x

+i
ε1

c2[ε1 + ε′(ω)]

{
− ω0(ω)

[
ε′(ω)[ε1 + ε′(ω)] +

ω

2

∂ε′(ω)
∂ω

]
+B

}]−1

(B4)

where

B = ε′′(ω)ε1ω
2. (B5)

In the limit of small damping,ε′′(ω) is small and considered negligible, and hence the term
in B is negligible in equation (B4). In small damping, the scattering cross section will have
a peak at a frequencyω0, close to the undamped frequencyω defined in equation (21) for
surface polaritons. It is therefore possible to define for everyqx a frequencyω0, and using the
approximationsε′(ω) ≈ ε′(ω0) and

ε1

ε′(ω)[ε1 + ε′(ω)]
ω

2

∂ε′(ω)
∂ω

→ 0 (B6)

we obtain

RHS= 2ω2ε1|q ′′2z|{
ε′(ω)[ε1 + ε′(ω)] + ε1

ω
2
∂ε′(ω)
∂ω

} { 1

(ω2
0 − ω2)− iω0(ω)

}
. (B7)

Replacing the frequencyω by ω0 everywhere except in the term of the ‘difference’ in ‘the
difference of two squares’ in equation (B7), we obtain

RHS= 2ω2
0ε1|q ′′2z|{

ε′(ω0)[ε1 + ε′(ω0)] + ε1
ω0
2
∂ε′(ω)
∂ω0

∣∣
ω=ω0

} { 1

2ω0(ω0 − ω)− iω00(ω0)

}
(B8)

and taking the imaginary part of equation (B8), its magnitude is

Im

{
iq∗2zq1z − iq∗2zq

2
2xq1z/q

2
2z

ε(ω)q1z − ε1q2z

}
= ω0ε1|q ′′2z|{

ε′(ω0)[ε1 + ε′(ω0)] + ε1
ω0
2
∂ε′(ω)
∂ω

∣∣
ω=ω0

}
×

1
20(ω0)

(ω − ω0)2 +
[

1
20(ω0)

]2 (B9)

which is equation (23) in the main text.
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